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We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polaron-
transformed Redfield equation combined with full counting statistics. The steady state heat currents are obtained via
this unified approach over a wide region of system–bath coupling, and can be analytically reduced to the Redfield and
nonequilibrium noninteracting blip approximation results in the weak and strong coupling limits, respectively. A giant heat
amplification phenomenon emerges in the strong system–bath coupling limit, where transitions mediated by the middle
thermal bath are found to be crucial to unravel the underlying mechanism. Moreover, the heat amplification is also exhibited
with moderate coupling strength, which can be properly explained within the polaron framework.
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1. Introduction
According to the Clausius statement,[1] the heat flow from

the hot source to the cold drain naturally occurs driven by
the thermodynamic bias. Without violating this fundamen-
tal law of thermodynamics, great efforts have been paid to
find other ways to conduct the heat flow.[2–8] Accompanying
with the rapid progress in quantum technology, the control of
heat flow becomes an increasingly important issue in quantum
computation[9] and quantum measurement.[10,11]

The thermal transistor, one of the novel phenomena in
quantum thermal transport, was initially proposed by B. Li
and coworkers.[12,13] In particular, heat amplification and neg-
ative differential thermal conductance (NDTC) are considered
as two main components of the thermal transistor. Heat am-
plification describes an effect within the three-terminal setup,
that the tiny modification of the base current will dramatically
change the current at the collector and emitter, which enables
the efficient energy transport.[12] While the NDTC effect is
characterized by the suppression of the heat flow with increase
of temperature bias within the two-terminal setup.[14–16]

Later, the spin-based fully quantum thermal transistor
was proposed by K. Joulain et al.,[17] which is composed
by three coupled-qubits, each interacting with one individual
thermal bath. The qubit–qubit interaction within the system is
found to be crucial to exhibit the heat amplification. Conse-
quently, the importance of the system nonlinearity and long-

range interaction on the transistor effect has also been unrav-
eled in various coupled-qubits systems.[18–20] Simultaneously,
the strong qubit–bath interaction is revealed to be another key
factor to cause giant heat amplification in the two- and three-
qubits systems,[21,22] which also stems from the NDTC effect.
Hence, NDTC is widely accepted as the crucial intergradient
to realize the giant heat amplification. However, J. H. Jiang et
al. pointed out that heat amplification can be realized via the
inelastic transport process independent of NDTC.[23] Hence,
basic questions are raised: Can these two types of heat amplifi-
cation coexist in one quantum system? What is the underlying
microscopic mechanism?

Very recently, a three-level quantum heat transistor was
preliminarily investigated by S. H. Su et al., which stressed
the significant influence of quantum coherence on the heat
amplification.[24] However, the calculations are based on
the phenomenological Lindblad equation, which cannot be
generalized to describe the heat transport beyond the weak
system–bath coupling. Considering the scientific importance
and extensive application of the nonequilibrium three-level
systems,[25–33] it is intriguing to give a comprehensive picture
of the heat transistor behavior. In particular, it is worthwhile
to give a unified analysis on the effect of the system–bath in-
teraction from the weak to strong coupling regimes on the heat
amplification and NDTC.

In this paper, we devote to investigating quantum thermal
transport in a quantum thermal transistor, which is composed
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by a three-level quantum system within the three-terminal
setup (Fig. 1(a)) by applying the polaron-transformed Red-
field equation (PTRE), detailed in Section 2. In Section 3,
the heat currents are obtained from PTRE combined with full
counting statistics (FCS),[34,35] and are reduced to the Red-
field and nonequilibrium noninteracting blip approximation
(NIBA) schemes.[36–39] In Subsection 4.1, the giant heat am-
plification is explored both with moderate and strong system–
middle bath interaction strengths, and the finite heat amplifi-
cation with inelastic-like process is analytically estimated in
the weak system-middle bath coupling regime. The corre-
sponding microscopic mechanisms are proposed. In Subsec-
tion 4.2, the negative differential thermal conductance is an-
alyzed based on the two-terminal setup, where the coopera-
tive contribution from thermal baths to exhibit NDTC is re-
vealed to be crucial. Moreover, the NDTC is found at moder-
ate system–middle bath coupling, which can not be explained
by the Redfield equation. Finally, we give a concise summary
in Section 5.

Tl Tr

Tm Tm

Tl Tr

(a) (b)
U
†
HU⊥ ⊥ ⊥

Fig. 1. Schematics of the nonequilbrium V-type three-level system
in (a) the original framework and (b) the polaron framework. The
three horizontal solid black lines represent the central three-level model
(|u⟩, u = l,r,0), and the double-arrowed solid brown line shows the co-
herent tunneling between two excited states |l⟩ and |r⟩; the rectangular
left red, top-middle purple, and right blue boxes describe three thermal
baths, which are characterized by temperatures Tl , Tm, and Tr , respec-
tively; the double-arrowed solid red, purple, and blue curves describe
interactions between the system and thermal baths, and the double-
arrowed dashed black lines describe transitions between different states
assisted by phonons in the corresponding thermal bath.

2. Model and method
We first introduce the nonequilibrium three-level sys-

tem and the framework of polaron transformation. Then, the
polaron-transformed Redfield equation is applied to obtain the
reduced system density matrix.

2.1. Nonequilibrium three-level system

The total Hamiltonian of the nonequilibrium three-level
system interacting with three thermal baths shown in Fig. 1(a)
is described as Ĥ = Ĥs+∑u=l,r,m(Ĥu

b +V̂u) with the units h̄= 1
and kB = 1. The quantum three-level system is expressed
as[25,27–30]

Ĥs = ε0|0⟩⟨0|+ ∑
u=l,r

εu|u⟩⟨u|+∆(|l⟩⟨r|+H.c.), (1)

where |l(r)⟩ is the left (right) excited state with the occupa-
tion energy εl(r), and |0⟩ is the ground state with ε0 = 0 for

simplicity. Specifically, for εl(r) > 0, the three-level system
corresponds to a V-type configuration. Whereas for εl(r) < 0,
it corresponds to a Λ-type configuration with excited state |0⟩
and ground states |l⟩ and |r⟩. It should be noted that the no-
tions of V-type and Λ-type have already been used in quantum
optics and quantum thermodynamics.[30,40,41] In the follow-
ing, our work is based on the V-type system without losing
any generality.

The Hamiltonian of the u-th (u = l,m,r) thermal bath is
described as Ĥu

b = ∑k ωkb̂†
k,ub̂k,u, where b̂†

k,u (b̂k,u) creates (an-
nihilates) one phonon in the u-th bath with the frequency ωk.
The interaction between the left (right) excited state and the
corresponding bath is given by[29]

V̂u = (Ŝ†
u +H.c.)∑

k
(gk,ub̂†

k,u +H.c.), u = l,r, (2)

with Ŝ†
u = |u⟩⟨0|. Here, the state |0⟩ only interacts with the

left and right baths. While the quantum dissipation of the two
excited states induced by the middle bath is modeled by a di-
agonal interaction,[24,28,29] which reads

V̂m = (|l⟩⟨l|− |r⟩⟨r|)∑
k
(gk,mb̂†

k,m +H.c.), (3)

where gk,u is the system–bath coupling strength. The u-
th thermal bath here is characterized by the spectral func-
tion Λu(x) = 4π ∑k |gk,u|2δ (x−ωk), Here, the spectral func-
tions are selected to have the super-Ohmic form Λl(r)(x) =

πγl(r)
x3

ω2
c

e−|x|/ωc and Λm(x) = παm
x3

ω2
c

e−|x|/ωc , where γl(r) and
αm are the coupling strengths corresponding to the l(r)-th bath
and the m-th bath, and the cut-off frequency is ωc. The super-
Ohmic bath has been extensively included to investigate quan-
tum dissipation[42,43] and quantum energy transport.[44–46]

In order to consider the interaction between the excited
states and the middle bath beyond the weak coupling limit, we
apply a canonical transformation [see Fig. 1(b)][36,37,43] Ĥ ′ =

Û†ĤÛ , with Û = exp[iB̂(|l⟩⟨l| − |r⟩⟨r|)] and the collective
phonon momentum operator B̂ = i ∑k(

gk,m
ωk

b̂†
k,m −H.c.). The

transformed Hamiltonian is given by Ĥ ′ = Ĥ ′
s +∑u=l,m,r(Ĥu

b +

V̂ ′
u). Specifically, the modified system Hamiltonian is given

by[34,35]

Ĥ ′
s = εN̂ +δεσ̂z +η∆σ̂x, (4)

with the average occupation energy ε = (εl + εr)/2 −
∑k |gk,m|2/ωk, the energy bias δε = (εl − εr)/2, the excita-
tion number operator N̂ = |l⟩⟨l|+ |r⟩⟨r|, the bias operator
σ̂z = |l⟩⟨l| − |r⟩⟨r|, and the tunneling operator σ̂x = |l⟩⟨r|+
|r⟩⟨l|. Here N̂ can be re-expressed as N̂ = Î − |0⟩⟨0| with Î
the unit operator in the space of the three-level system. It
should be noted that the operators σ̂a (a = x,y,z) are not
Pauli operators for σ̂2

a ̸=Î. The renormalization factor η =

Trm{ρ̂m
b e±2iB̂}/Trm{ρ̂m

b }, with Trm{} the trace over the mid-
dle bath, ρ̂m

b = e−Ĥm
b /kBTm thermal equilibrium state, and Tm

the temperature of the middle bath. Then, the transformed
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system Hamiltonian Ĥ ′
s can be exactly solved as Ĥ ′

s| ± ⟩η =

E±|±⟩η , where the eigenstates are |+⟩
η
= cos θ

2 |l⟩+sin θ

2 |r⟩
and |−⟩

η
=−sin θ

2 |l⟩+cos θ

2 |r⟩, with tanθ =η∆/δε and the
eigenvalues E± = ε±

√
(δε)2 +(η∆)2. The modified system-

bath interactions are given by[34,35]

V̂ ′
m =∆ [cos(2B̂)−η ]σ̂x +∆ sin(2B̂)σ̂y, (5a)

V̂ ′
u = (e−iB̂u Ŝ†

u+ e iB̂u Ŝu)∑
k
(gk,ub̂†

k,u+g*k,ub̂k,u) , u = l,r, (5b)

with σ̂y = −i(|l⟩⟨r|− |r⟩⟨l|), B̂l = B̂, and B̂r = −B̂. It should
be noted that the factor η results from the renormalization of
the dressed coherent tunneling between the two excited states,
i.e., ∆Û†σ̂xÛ = η∆σ̂x + V̂ ′

m, which makes the thermal aver-
age of V̂ ′

m vanish for arbitrary system–middle bath coupling
strength.[34,43]

All the interaction terms V̂ ′
u (u = l,m,r) of Eqs. (5a) and

(5b) imply multi-phonon transferring processes. Specifically,
V̂ ′

m involves multiple phonons absorption or emission accom-
panying the transition between the two excited states, which
can be understood by the expansion cos(2B̂) = ∑n=0

(2B̂)2n

(2n)!

and sin(2B̂) = ∑n=0
(2B̂)2n+1

(2n+1)! . While the interaction between

the left (right) bath phonon and the three-level system V̂ ′
u now

involves the polaron effect embodied in the displacement op-
erator exp(±iB̂u) of the middle bath phonon modes.

2.2. Polaron-transformed Redfield equation

It can be easily verified that the thermal average of
the modified interaction Trm{ρ̂m

b V̂ ′
m}/Trm{ρ̂m

b } is zero, which
makes V̂ ′

m a properly perturbative term.[34] Therefore, we can
apply the quantum master equation in the polaron frame to
study the dynamics of the three-level system. Moreover, we
assume the interaction between the system and the left (right)
bath V̂ ′

l(r) is weak. Thus we can separately apply the perturba-
tion theory with respect to the two terms in Eqs. (5a) and (5b).
Accordingly, the PTRE based on the Born–Markov approxi-
mation can be written as

d
dt

ρ̂s =−i[Ĥ ′
s, ρ̂s]+ ∑

u=l,m,r
ℒu[ρ̂s], (6)

where ρ̂s is the density operator of the three-level system. The
m-th dissipator is specified as[34,35]

ℒm[ρ̂s] = ∑
α=x,y;ω,ω ′

γα(ω
′)
[
P̂α(ω

′)ρ̂sP̂α(ω)

− P̂α(ω)P̂α(ω
′)ρ̂s
]
+H.c., (7)

where the dissipation rates between the two excited eigenstates
are

γx(ω) = η
2
∆

2
∫

∞

0
dτ e iωτ [coshφm(τ)−1], (8a)

γy(ω) = η
2
∆

2
∫

∞

0
dτ e iωτ sinhφm(τ), (8b)

with the correlation phase

φm(τ) = 4∑
k

∣∣∣gk,m

ωk

∣∣∣2{cos(ωkτ)[2nm(ωk)+1]− i sin(ωkτ)}.

The operators P̂α(ω) (α = x,y) are the projective operators
of the system eigenbasis, which are defined by σ̂α(−τ) =

∑ω P̂α(ω)e iωτ with P̂α(−ω) = P̂†
α(ω).[47] The rate γy(ω)

describes the transition between the two excited eigenstates
|±⟩η involving odd number of phonons from the mid-
dle thermal bath. The bath average phonon number is
nu(ω) = 1/[exp(ω/Tu)− 1], u = r, l,m, with Tu the tem-
perature of the u-th bath. The approximated expression
of the real part of γy(ω) to the first-order of φm reads
Re[γy(ω)]≈ 4πη2∆ 2

∑k |
gk,m
ωk

|2[nm(ωk)+1]δ (ω −ωk), which
contains the sequential process of creating one phonon with
frequency ω = ωk in the m-th bath. A direct consequence of
the polaron transformation is that the dissipative rates γx(ω)

and γy(ω) contain all the high-order terms of φm, which can
be understood as the contribution of the multiple-phonon cor-
relation. In the strong system–bath coupling strength regime,
such high-order correlations should be properly incorporated
in the evolution of the open quantum system.

Moreover, the dissipators associated with the left and
right baths are given by

ℒu[ρ̂s] = ∑
ω,ω ′

[
κu,−(ω

′)Q̂u(ω
′)ρ̂sQ̂†

u(ω)

+κu,+(ω
′)Q̂†

u(ω
′)ρ̂sQ̂u(ω)

−κu,+(ω
′)Q̂u(ω)Q̂†

u(ω
′)ρ̂s

−κu,−(ω
′)Q̂†

u(ω)Q̂u(ω
′)ρ̂s
]
+H.c., (9)

where the system part operators are defined by Ŝu(−τ) =

∑ω Q̂u(ω)e iωτ ,[48] and the dissipation rates are

κu,+(ω) =
∫

∞

−∞

dω1

4π
Λu(ω1)nu(ω1)Cu(ω1 −ω), (10a)

κu,−(ω) =
∫

∞

−∞

dω1

4π
Λu(ω1)[1+nu(ω1)]Cu(−ω1 +ω). (10b)

The phonon correlation function above is shown as Cu(ω) =

η2
u
∫

∞

0 dτ e iωτ eφm(τ)/4, where ηu = Tru{ρ̂u e iB̂}/Tru{ρ̂u},
with Tru{} the trace over the space of the u-th bath and
ρ̂u = e−Ĥu

b /kBTu . The transition rates in Eqs. (10a) and (10b)
demonstrate the joint contribution of the left (right) and the
middle thermal baths on the nonequilibrium energy exchange.
Specifically, κl(r),+(ω) describes the process that one phonon
with the frequency ω1 is emitted from the l(r)-th thermal bath
to assist the excitation from |0⟩ to the eigenstate with energy
gap ω , and the resultant energy ω1 −ω > 0 (ω1 −ω < 0) is
released (absorbed) into (from) the m-th bath. While the rate
κl(r),−(ω) shows the transition that one phonon with frequency
ω1 is absorbed by the l(r)-th thermal bath, and the three-level
system is relaxed from the excited state with energy ω into |0⟩.

For quantum heat transfer in the nonequilibrium spin-
boson model, the polaron transformation and NIBA scheme
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was firstly proposed by D. Segal and A. Nitzan,[36,37] where
the NDTC was unraveled at strong system–bath coupling un-
der the Marcus approximation. Moreover, D. Segal et al.
combined the NIBA scheme with full counting statistics to
investigate the heat current flucutuation.[38,39] Later, inspired
by these works, the Redfield equation and NIBA limits were
unified by introducing the PTRE embedded with full count-
ing statistics.[34,35] It should be noted that in this work the
perturbation treatment of the system–middle bath interaction
by the polaron transformation is the same as done in previous
works for the nonequilibrium spin-boson model, which makes
it proper to arbitrarily tune the system–middle bath coupling
strength.

However, for the dissipator in Eq. (9), it is found that
though the system–left (right) bath coupling is weak, the en-
ergy exchange reflected by the transition rates in Eqs. (10a)
and (10b) is cooperatively contributed by the left (right)
bath and the middle bath. Such joint exchange process
is apparently different from the sequential process in the
nonequilibrium spin-boson model as treated by the Redfield
method.[34,37] Therefore, we nontrivially extend the applica-
tion of the polaron-transformed Redfield equation from the
nonequilibrium spin-boson model[34,35] to the nonequilibrium
three-level quantum system. This is the main technical point
in the present work.

3. Steady state heat currents
We analyze steady state behaviors of heat currents via full

counting statistics[33,49] by tuning the system–middle bath in-
teraction in Fig. 2. The detail derivation of quantum master
equation combined with full counting statistics and expres-
sions of heat currents can be found in Appendix A. It is found
that the currents are all significantly enhanced in the moder-
ate coupling regime around αm∈(0.5,2), but are dramatically
suppressed in both the strong and weak coupling limits. More-
over, the current flowing into the middle bath is more sensitive
in response to the change of αm. It can be seen that Jm begins
to increase significantly when αm is around 0.01, which is one
order smaller than those of the other two currents. It should be
noted that though the heat currents are seemly negligible in the
weak system–middle bath coupling regime, they are actually
nonzero (e.g., Jl/γ =−0.00295 with αm = 0.001).

The PTRE combined with FCS has been successfully
introduced to investigate quantum thermal transport in the
nonequilibrium spin-boson systems,[34,35,45] which is able to
fully bridge the strong and weak system–bath coupling lim-
its. While for the nonequilibrium three-level quantum system,
it should admit that it is generally difficult to analytically ob-
tain the expressions of steady state heat currents with arbitrary
coupling strength αm between two excited states and middle
thermal bath. However, in the strong and weak coupling lim-

its the NIBA approach and Redfield equation can adequately
describe the steady state of the system, respectively.

-0.1

J
r
/
γ

J
m
/
γ

J
l
/
γ

0

-0.004

0

0.004

polaron

Redfield

NIBA

0.001 0.01 0.1 1

αm

5

0

0.05

0.10

(a)

(b)

(c)

Fig. 2. Steady state heat currents (a) Jl/γ , (b) Jm/γ , and (c) Jr/γ as a func-
tion of the coupling strength αm. The red circles are based on the Red-
field scheme; the blue squares are based on the nonequilibrium noninteract-
ing blip approximation (NIBA); the black solid line is calculated from the
nonequilibrium polaron-transformed Redfield approach. The other parame-
ters are given as εl = 1.0, εr = 0.6, ∆ = 0.6, γ = 0.0002, ωc = 10, Tl = 2,
Tm = 1.2, and Tr = 0.4.

Tl Tr

Tl Tr Tl Tr

Tm

Tm

Tm

Tm

Tm

(a) (b) (d)

(c) (e)

Fig. 3. (a) The globally cyclic transition contributed by the G±
l G±

mG∓
r /𝒜,

and the locally conditional transitions contributed by (b) G−
mG+

l G−
l /𝒜,

(c) G+
mG+

r G−
r /𝒜, (d) G−

r G+
l G−

l /𝒜, and (e) G−
l G+

r G−
r /𝒜 within the

nonequilibrium NIBA scheme, respectively. The horizontal solid black line at
top represents |0⟩; two horizontal solid black lines at bottom describe renor-
malized energy levels |l(r)⟩ with the energies El(r) = εl(r) −∑k |gk,m|2/ωk .
The other symbols are the same as those in Fig. 1.

3.1. Strong coupling limit

In the strong coupling limit, the renormalization factor is
dramatically suppressed, i.e., η≪1. The eigenstates are re-
duced to the localized ones |+ ⟩

η
≈ |l⟩, | − ⟩

η
≈ |r⟩, and the

renormalized energies become Eu = (εu−∑k |gk,m|2/ωk), u =
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l,r. As the renormalization energy ∑k |gk,m|2/ωk exceeds the
bare energy εu, the configuration of the transformed three-level
system becomes the Λ-type as shown in Fig. 3(a). Hence,
the nonequilibrium PTRE is reduced to the NIBA scheme,
which can be analytically solved (the details are given in Ap-
pendix B). Accordingly, the heat currents are explicitly given
by

Jl,NIBA =
1
𝒜
[
(G+

l G+
mG−

r ⟨ω⟩l,+−G−
l G−

mG+
r ⟨ω⟩l,−)

+(G−
m +G−

r )G
−
l G+

l (⟨ω⟩l,+−⟨ω⟩l,−)
]
, (11)

Jr,NIBA =
1
𝒜
[
(G−

l G−
mG+

r ⟨ω⟩r,+−G+
l G+

mG−
r ⟨ω⟩r,−)

+(G+
m +G−

l )G
+
r G−

r (⟨ω⟩r,+−⟨ω⟩r,−)
]
, (12)

and Jm = −Jl − Jr, where the coefficient is 𝒜 = (G+
m +

G−
m)(G

+
l +G+

r )+G+
mG−

r +G−
mG−

l +G−
l G+

r +G−
r (G

+
l +G−

l ),
the transition rates are

G±
m =

∫
∞

−∞

dτ e±i(εl−εr)τ η
2 eφm(τ) , (13a)

G+
u =

1
4π

∫
∞

−∞

dω1Λu(ω1)[1+nu(ω1)]

× [Cu(−Eu −ω1)+H.c.] , (13b)

G−
u =

1
4π

∫
∞

−∞

dω1Λu(ω1)nu(ω1)[Cu(ω1 +Eu)+H.c.] , (13c)

and the average energies into the u-th thermal bath are

⟨ω⟩u,+ =
1

4πG+
u

∫
∞

−∞

dω1ω1Λu(ω1)[1+nu(ω1)]

× [Cu(−Eu −ω1)+H.c.] , (14a)

⟨ω⟩u,− =
1

4πG−
u

∫
∞

−∞

dω1ω1Λu(ω1)nu(ω1)

× [Cu(ω1 +Eu)+H.c.] . (14b)

In the following, the subscript u only represents l or r without
further declaration. The rates G±

u in Eqs. (13b) and (13c) are
contributed by two physical processes. Take G+

u for example:
(i) resonant energy relaxation from the state |0⟩ to |u⟩, with the
energy Eu absorbed by the u-th thermal bath; (ii) off-resonant
transport process, where the thermal baths show non-additive
cooperation. As the three-level system releases energy Eu, part
of the heat ω1 is absorbed by the u-th bath, whereas the left en-
ergy (−Eu −ω1) is consumed by the middle bath. Similarly,
the rate G−

u describes the reversed process of G+
u .

The currents Jl and Jr in Eqs. (11) and (12) are con-
tributed by three distinct types of thermal transport processes:
(i) globally cyclic transition in Fig. 3(a), which is contributed
by the cooperative rate G±

l G±
mG∓

r /𝒜 to carry the average en-
ergy ⟨ω⟩u,+ (⟨ω⟩u,−) to (from) the u-th bath; (ii) local tran-
sition |u⟩↔|0⟩ mediated by the middle bath dependent rate
G±

m , which transfers the energy ⟨ω⟩u,+−⟨ω⟩u,−. Figures 3(b)
and 3(c) illustrate these transition processes characterized by
the rates G−

mG+
l G−

l /𝒜 and G+
mG+

r G−
r /𝒜, respectively; (iii) lo-

cal transition |u⟩↔|0⟩ mediated by the u-th bath dependent
rate G−

u , which is characterized by the rates G−
r G+

l G−
l /𝒜 and

G−
l G+

r G−
r /𝒜 as illustrated in Figs. 3(d) and 3(e), respectively.

We compare the heat currents calculated by the nonequi-
librium NIBA with the ones calculated by the PTRE in Fig. 2.

It is found that Jl(r) obtained by these two methods are consis-
tent with each other in a wide regime of the coupling strength
αm. While Jm obtained from the nonequilibrium NIBA shows
apparently disparity with the result of the PTRE, unless the
coupling strength increases to the regime αm&2.

3.2. Weak coupling limit

In the weak coupling limit, the renormalization fac-
tor becomes η ≈ 1. The counting parameter depen-
dent transition rates defined in Eqs. (A5a) and (A5b) are
simplified to Re[κu,+(ω

′,χu)] ≈ 1
4Λ(ω ′)nu(ω

′)e−iω ′χu and
Re[κu,−(ω

′,χu)] ≈ 1
4Λ(ω ′)[1 + nu(ω

′)]e iω ′χu . Meanwhile,
the transition rates in Eqs. (8a) and (8b) are reduced to
Re[γx(ω)] ≈ 0 and Re[γy(ω)] ≈ ∆ 2

ω2 Λm(ω)[1+ nm(ω)], where
we only keep the lowest order terms of the correlation phase
φm(τ). Then, the PTRE in Eq. (A3) is reduced to the seminal
Redfield equation (see Appendix C). Consequently, the steady
state currents are obtained as

Jl = ∑
ξ=±

(1+ξ cosθ)

4ℬ
Eξ (Γ

e
+ +Γ

e
−)

×
{

κ
a
l,ξ [Γ

e
ξ

Γ
a

ξ̄
+(Γ e

+ +Γ
e
−)Γ

ξ
p ]

−κ
e
l,ξ (Γ

a
+Γ

a
− +Γ

a
+Γ

+
p +Γ

a
−Γ

−
p )
}
, (15)

Jr = ∑
ξ=±

(1−ξ cosθ)

4ℬ
Eξ (Γ

e
+ +Γ

e
−)

×
{

κ
a
r,ξ [Γ

e
ξ

Γ
a

ξ̄
+(Γ e

+ +Γ
e
−)Γ

ξ
p ]

−κ
e
r,ξ (Γ

a
+Γ

a
− +Γ

a
+Γ

+
p +Γ

a
−Γ

−
p )
}
, (16)

with ξ̄ ≡−ξ . The current into the middle bath is

Jm =−(E+−E−)
Γ e
+ +Γ e

−
ℬ

(Γ a
+Γ

e
−Γ

+
p −Γ

a
−Γ

e
+Γ

−
p ), (17)

where the coefficient is ℬ = ∑ξ=±(Γ
a

ξ
+Γ e

+ +Γ e
−)[Γ

e
ξ

Γ a
ξ
+

(Γ e
++Γ e

−)Γ
ξ

p ], the combined rates are Γ
e(a)
+ = 1

2 (κ
e(a)
l,+ cos2 θ

2 +

κ
e(a)
r,+ sin2 θ

2 ), Γ
e(a)
− = 1

2 (κ
e(a)
l,− sin2 θ

2 + κ
e(a)
r,− cos2 θ

2 ), and

Γ
+(−)

p = sin2 θ

2 κ
e(a)
p , with the local rates κe

u,± =

Λu(E±)nu(E±), κa
u,± = Λu(E±)[1+ nu(E±)], κe

p = Λm(E+ −
E−)nm(E+−E−), and κa

p = Λm(E+−E−)[1+nm(E+−E−)].
We plot the currents [Eqs. (15)–(17)] in Fig. 2 to ana-

lyze the valid regime of αm by comparing with the counterpart
based on the PTRE. It is found that for Jl and Jr, the Red-
field scheme is applicable even for the system–middle bath
coupling strength α = 0.1. While for Jm, the Redfield scheme
becomes invalid as the system–middle bath coupling strength
surpasses 0.01. This fact indicates that the influence of the
phonons in the middle bath should be necessarily included to
describe the transitions between |±⟩

η
and |0⟩, which may en-

hance the energy flow into the middle bath accordingly.
In the following, based on the consistent analysis of the

heat currents (particular for Jm) we approximately classify
the strength of the system–middle bath interaction into three
regimes: (i) weak coupling regime αm<0.01; (ii) moderate
coupling regime 0.01 ≤ αm ≤ 2; (iii) strong coupling regime
αm > 2.
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4. Results and discussion
Heat amplification and negative differential thermal con-

ductance are considered as two crucial components of the
quantum thermal transistor. Particularly for heat amplifica-
tion, the schematic which is shown in Fig. 1(a) has the ability
to significantly enhance the heat flow into the left or right ter-
minal by a tiny modulation of the middle terminal temperature.
Formally, the amplification factor is defined as[12]

βu =
∣∣∂Ju/∂Jm

∣∣, u = l,r. (18)

Moreover, owning to the flux conservation of the three-level
system Jl +Jm +Jr = 0, the amplification factors βl and βr are
related by βl =

∣∣βr +(−1)θ
∣∣, with θ = 0 when ∂Jr/∂Jm > 0,

and θ = 1 when ∂Jr/∂Jm < 0. The thermal transistor is prop-
erly functioning under the condition βl(r) > 1. Currently, it is
known that the heat amplification can be realized mainly via
two mechanisms: (i) one is driven by NDTC within the two-
terminal setup, where the heat current is suppressed with the
increase of the temperature bias;[12,16] (ii) the other is driven
by the inelastic transfer process without NDTC, which can be
unraveled even in the linear response regime.[23]

4.1. Transistor effect

We first analyze the effect of the system-middle bath in-
teraction on the heat amplification of the nonequilibrium three-
level system, shown in Fig. 4. It is found that the giant am-
plification factor appears in the moderate and strong system-
middle bath coupling regimes both for the low and high tem-
perature biases between the left and right thermal baths. More-
over, the finite amplification factor can be observed at the
high temperature bias with weak system-middle bath coupling
strength. Hence, we mainly investigate the behavior and the
underlying mechanism of the heat amplification at the high
temperature bias.

Tl/.↪ Tr/.

Tl/.↪ Tr/.

αm

10
-3

10
-2

10
-1

10
0

10
0

10
1

Fig. 4. Heat amplification factor as a function of system–middle bath
coupling strength αm in low (Tl = 0.5, Tr = 0.4) and high (Tl = 2, Tr =
0.4) temperature bias regimes, with max

Tr<Tm<Tl
{βr} the maximal value

of βr by tuning the temperature of the middle bath Tm between Tr and
Tl . The other parameters are given by εl = 1.0, εr = 0.6, ∆ = 0.6,
γ = 0.0002, and ωc = 10.

4.1.1. Heat amplification at strong coupling

We first investigate the influence of the strong system–
middle bath interaction on the heat amplification by tuning the

temperature Tm of the middle bath. As shown in Fig. 5(a), the
amplification factor is monotonically enhanced when the cou-
pling strength increases from the moderate coupling regime
(e.g., αm = 0.5). When the interaction strength enters the
strong coupling regime (αm = 2), the amplification factor be-
comes large but finite in the low temperature regime of Tm

(see Appendix B3 for brief analysis), whereas it is strongly
suppressed as Tm reaches Tm = Tl = 2. Interestingly, as αm is
further strengthened (e.g., up to 4), a giant heat amplification
appears with a divergent point, which results form the turnover
behavior of Jm shown in the inset of Fig. 5(b). Moreover, the
heat currents into the left and right thermal baths in Fig. 5(b)
corresponding to αm = 4 are much larger than Jm, which en-
sures the validity of the heat amplification in the strong cou-
pling regime.

Next, we give a comprehensive picture of the amplifica-
tion factor by modulating the temperature Tm and coupling
strength αm in Fig. 5(c). It is found that the divergent behav-
ior of the heat amplification is generally robust in the strong
coupling regime (αm & 2.8). In summary, we conclude that
the giant heat amplification feature favors the strong system–
middle bath interaction.

0.5 1.0 1.5 2.0

1

10

50

0.5 1.0

Jl/γ Jm/γ Jr/γ

1.5 2.0
-4

-2

0

2

0.5 1.0 1.5 2.0
-1
0
1
2
T10

-4

1

3

10

2

100

1
0.4

2.01.51.00.5

(c)

(a) (b)αm=0.5

α
m

β
r

β
r
/
1
0
-
3

αm=1
αm=2
αm=4

Tm

Tm

Tm

Fig. 5. (a) Heat amplification factor βr as a function of the middle bath tem-
perature Tm with various system–middle bath coupling strength αm; (b) three
steady state heat currents Ju/γ (u = l,m,r) as a function of Tm with the cou-
pling strength αm = 4, and the inset is the zoom in view of Jm/γ; (c) the
3D view of the heat amplification factor βr by tuning Tm and αm. The other
parameters are given by εl = 1.0, εr = 0.6, ∆ = 0.6, γ = 0.0002, ωc = 10,
Tl = 2, and Tr = 0.4.

4.1.2. Mechanism of the giant heat amplification

We devote this subsection to exploring the underlying
mechanism of the giant heat amplification βr at strong system–
middle bath coupling regime (e.g., αm = 4) based on the ana-
lytical expressions of heat currents in Eqs. (11) and (12). The
limiting condition of large energy gap (−Er ≫ 1) and low tem-
perature of the right bath results in the vanishing phonon exci-
tation nr(ω ≈−Er)≈ 0. Thus, the factor G−

r shows negligible
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contribution to the transition between the states |r⟩ and |0⟩,
which is shown in Fig. 6(a). Moreover, the large energy gap
(−El(r) ≫ 1) also generally leads to G+

l(r) ≫ G−
l(r). Hence, the

heat current Jr is simplified as

Jr,NIBA ≈ 1
𝒜

G−
l G−

mG+
r ⟨ω⟩r,+, (19)

with the coefficient reduced to 𝒜 ≈ (G+
m + G−

m)(G
+
l +

G+
r ). Jr,NIBA is determined by the globally cyclic transi-

tion |0⟩→|l⟩→|r⟩→|0⟩, which is characterized by the coop-
erative rate 1

𝒜G−
l G−

mG+
r . Moreover, it should be noted that

though G+
m is much larger than G−

m , the ratio G−
m/G+

m =

exp [−(εl − εr)/(kBTm)] shows monotonic increase as a func-
tion of Tm [see dashed lines with circles and up-triangles
in Fig. 6(a)]. Then, by tuning up the temperature Tm from
Tr = 0.4, the increase of G−

m/G+
m dominates the monotonic en-

hancement of Jr,NIBA, as the rates G±
l , G+

r and energy ⟨ω⟩r,+
are nearly constant as shown in Figs. 6(a) and 6(b).

(a) (b)

(e) (f)

(c) (d)

0

50

100

Tm

Tl Tr Tl Tr

Tm

Tm

Jm,NIBA
βr,NIBA

<ω>r,-
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-
Gr

+
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-
Gl

+
Gm

-
Gm

+

<ω>l,-

<ω>l,+

<ω>r,+

βr

Jm, NIBA
(a)

(b)
Jm, NIBA

Tm

0.5
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2
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Tm

0.5
10-12
10-10
10-8

10-4

10-3

1.0 1.5 2.0

Tm

0.5
4

5
6

18

19

20

1.0 1.5 2.0

0.5 1.0 1.5 2.0

T10
-4

Fig. 6. Steady state behaviors as a function of the middle bath temperature
Tm within the nonequilibrium NIBA at strong coupling (αm = 4): (a) tran-
sition rates G±

u (u = l,m,r) in Eqs. (13a)–(13c), and (b) average energy
quanta ⟨ω⟩u,± (u = l,r) in Eqs. (14a) and (14b); (c) heat current Jm,NIBA
and its main components in Eqs. (20a) and(20b), and (d) comparison of the
approximate amplification factor βr,NIBA with βr . (e) and (f) Schematic il-
lustrations of flow components J(a)

m,NIBA and J(b)
m,NIBA. The other parameters

are the same as those in Fig. 5.

However, the current Jm,NIBA is no longer a monotonic
function of Tm, which owns a maximum Tm ≈ 1 as illustrated
in Fig. 6(c). The existence of a turnover point of Tm is crucial
to the giant heat amplification, so it worths a careful study on
Jm,NIBA. As G−

r is negligible, Jm,NIBA can be approximated as
the sum of two terms Jm,NIBA ≈ J(a)

m,NIBA + J(b)
m,NIBA, with com-

ponents

J(a)
m,NIBA =

1
𝒜

G−
mG−

l G+
r (⟨ω⟩l,−−⟨ω⟩r,+) , (20a)

J(b)
m,NIBA =

1
𝒜

G−
mG−

l G+
l (⟨ω⟩l,−−⟨ω⟩l,+). (20b)

The approximate factor βr,NIBA =
∣∣∂Jr,NIBA/∂ (J(a)

m,NIBA +

J(b)
m,NIBA)

∣∣ is agreeable with the counterpart obtained by the

PRTE, shown in Fig. 6(d). Specifically, J(a)
m,NIBA describes a

globally cyclic current with the loop rate G−
mG−

l G+
r /𝒜 to ex-

tract energy ⟨ω⟩l,− out of the l-th bath and input ⟨ω⟩r,+ into
the r-th bath, the resultant energy difference (⟨ω⟩l,−−⟨ω⟩r,+)

is absorbed by the middle bath. While J(b)
m,NIBA is only asso-

ciated with the local transition process between states |l⟩ and
|0⟩, and each transition pumps energy (⟨ω⟩l,− − ⟨ω⟩l,+) out
of the left bath into the middle bath. These two currents are
schematically illustrated in Figs. 6(e) and 6(f), respectively.

For both J(a)
m,NIBA and J(b)

m,NIBA, only the factors G−
m/G+

m

and ⟨ω⟩l,− are obvious dependent on Tm, whereas all the other
factors can be approximately treated constant. In the low
temperature regime of Tm, the increase behavior of Jm,NIBA

is due to the increase of G−
m/G+

m . However, as the tempera-
ture Tm passing the turnover point, the monotonically decrease
of ⟨ω⟩l,− leads to the suppression of Jm,NIBA [see Fig. 6(b)].
Therefore, the turnover behavior of Jm mainly results in the
giant heat amplification factor.

4.1.3. Heat amplification at weak and moderate cou-
plings

We investigate heat amplification at weak system–middle
bath coupling in Fig. 7(a). It is found that in the weak cou-
pling regime (e.g., αm = 0.001, the dashed black line with
circles), the three-level system shows amplifying ability with
finite amplification factor (βr ≈ 6) in the low temperature
regime Tm ∈ [0.4,1.1]. This result is consistent with the
counterpart from the Redfield equation (dashed-dotted line).
This clearly demonstrates the existence of the amplification
effect in absence of the NDTC. Then, we analytically esti-
mate the amplification factor. It is found that the phonon
from the middle bath is not involved in the transition process
between | ± ⟩

η
and |0⟩, resulting in Re[κu,+(E±)] ≈ κe

u,±/2
and Re[κu,−(E±)] ≈ κa

u,±/2, with κe
u,± = Λu(E±)nu(E±) and

κa
u,± = Λu(E±)[1+ nu(E±)]. Then, the current into the mid-

dle bath is shown as Jm∝(Γ a
+Γ e

−Γ +
p −Γ a

−Γ e
+Γ −

p ) [see the full
expression in Eq. (17)], which is contributed by two cyclic
flows, demonstrating the inelastic transport process. More-
over, considering the limiting case E+ ≫ E−, Γ ±

p ≫Γ
a(e)
− and

Γ
a(e)
+ ≫Γ

a(e)
− , the current into the right bath with high temper-

ature bias (Tl≫Tr) is generally dominated by the component
Jr∝(κa

r,+Γ e
+ − κe

r,+Γ a
+ )Γ

+
p . Both Jm and Jr are shown to be

strongly affected by G±
p , which implies the inelastic exchange

process. It is interacting to find the linear relationship of cur-
rents ∂Jr/∂Tm = βr∂Jm/∂Tm, where the amplification factor
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is approximately expressed as [see Eq. (C16) in Appendix C]

βr ≈
sin2

θ

16

∣∣∣ κe
l,+κa

r,+−κa
l,+κe

r,+

Γ a
− (Γ

a
+ +Γ e

+)+Γ a
+Γ e

−

∣∣∣, (21)

which is irrelevant to Tm and αm. While in the low tem-
perature bias limit (Tl≈Tr), due to κ

a(e)
l,± ≈κ

a(e)
r,± , the current

into the right bath is determined by the current component
Jr∝(κa

r,+Γ e
−Γ +

p −κe
r,+Γ a

−Γ −
p ). Then, the amplification factor is

approximated as βr≈(1− cosθ)/2, which demonstrates that
the amplification effect becomes weak. This is qualitatively
consistent with the result shown in Fig. 4 with weak system–
middle bath coupling strength (e.g., βr≈1 with αm = 0.001).

If we increase the coupling strength αm up to the mod-
erate regime (e.g., αm = 0.02), the giant amplification factor
appears in the comparatively low temperature regime [dashed
line with up-triangle in Fig. 7(a)], which is due to the turnover
behavior of Jm in Fig. 7(b). Such feature results from NDTC,
which will be addressed in the following subsection. It should
be emphasized that the heat amplification is purely explored
by the PTRE, which however cannot be explained with the
Redfield equation.
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102

0.8 1.0 1.2 1.4
-3
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4.9

(b)(a)

Tm Tm

T10
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β
r
/
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-
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αm=0.01
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αm=0.1
αm=0.2
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Jl/γ
Jm/γ
Jr/γ

Fig. 7. (a) Heat amplification factor βr with various coupling strengthes αm,
and (b) steady state heat currents with αm = 0.02 as a function of Tm, the
inset is the zoom-in view of Jm/γ . The other parameters are the same as
those in Fig. 5.

4.2. Negative differential thermal conductance

To better understand the amplification effect in Fig. 7,
we investigate the steady state heat current within the two-
terminal setup (the l-th and m-th thermal baths), schemati-
cally shown in Fig. 8(a). We stress that the phonon in the
middle bath should be necessarily included to induce NDTC.
Specifically, we keep one phonon transfer process for the rate
γx(y)(ω). While for rates κu,±, we first consider the zeroth or-

der as κ
(0)
u,+(E±)=η2

u κe
u,±/2 and κ

(0)
u,−(E±)=η2

u κa
u,±/2. Then,

the zeroth order heat current J(0) obtained from the PTRE
shows monotonic enhancement by increasing the temperature
bias Tl −Tm in Fig. 8(b), which demonstrates no NDTC signa-
ture. Next, we include the first order corrections to the transi-
tion rates as

κ
(1)
u,+(E±) = κ

(0)
u,+(E±)+

∫
∞

−∞

dω1

4π
Λu(ω1)nu(ω1)

×Re
[
C(1)

u (ω1 −E±)
]
, (22a)

κ
(1)
u,−(E±) = κ

(0)
u,−(E±)+

∫
∞

−∞

dω1

4π
Λu(ω1)[1+nu(ω1)]

×Re
[
C(1)

u (−ω1 +E±)
]
, (22b)

with the single phonon correlation function C(1)
u (±ω1∓E±) =

η2
u

4
∫

∞

0 dτ e i(±ω1∓E±)τ φm(τ). The heat current J(1)polaron up to the
first order correction shows interesting NDTC feature, which
is almost identical with the exact numerical solution from the
PTRE J. Therefore, we conclude that the middle bath phonon
induced transition between |0⟩ and |± ⟩

η
is crucial to the ap-

pearance of NDTC, as shown in Fig. 8(a), which cannot be
found from the standard Redfield scheme.
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Fig. 8. (a) Schematic illustration of quantum thermal transport in the three-
level system (|±⟩

η
and |0⟩) contacting with the l-th and m-th thermal baths;

(b) steady state heat currents by modulating the temperature bias Tl − Tm,
which have different order approximations with αm = 0.02; (c) steady state
heat currents by tuning the temperature bias Tl −Tm with various system–
middle bath coupling strengthes. The temperature of the left thermal bath is
Tl = 2, and the other parameters are the same as those in Fig. 5.

Moreover, we investigate the effect of the system–middle
bath coupling strength on the steady state heat currents by
modulating the temperature bias Tl −Tm, as shown in Fig. 8(c).
It is found that besides the emergence of NDTC with mod-
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erate interaction strength (e.g., αm = 0.05), the nonmono-
tonic behavior of the current is also clearly seen at strong
system–middle bath coupling αm = 4. With certain approx-
imation, such NDTC can be explained within the nonequilib-
rium NIBA, by which the current is simplified to

Jl−m=
1
𝒜′ G

−
mG+

l G−
l (⟨ω⟩l,−−⟨ω⟩l,+), (23)

with 𝒜′ = (G+
m +G−

m)G
+
l +G−

mG−
l . It should be noted that

G±
l(m)

and ⟨ω⟩l,± in this two-terminal case have the identi-
cal expression as shown in Eqs. (13a)–(13c) and (14a)–(14b)
within the three-terminal setup, respectively. Considering the
dramatic suppression of the transition rate G−

m with large tem-
perature bias Tl − Tm, i.e., low temperature regime of Tm in
Fig. 6(a), the transition from |r⟩ to |l⟩ is strongly blocked,
which dramatically suppresses the flux rate in Jl−m. It finally
leads to NDTC.

5. Conclusion
To summarize, we study the steady state heat currents in

the nonequilibrium three-level system interacting with three
individual thermal baths. We apply the PTRE combined with
FCS to investigate the system density matrix and the resul-
tant heat currents. In the weak and strong system–middle
bath coupling limits, we obtain the analytical expression of
heat currents with the Redfield scheme and nonequilibrium
NIBA approach, which are consistent with the counterpart of
the PTRE. This extends the application of the PTRE to the
nonequilibrium three-level models from the previous nonequi-
librium (coupled) spin-boson model.

We also study the thermal transistor effect by tuning the
system–middle bath coupling strength from weak to strong
coupling regimes. We first explore the giant heat amplifica-
tion factor with strong coupling. It is found that the glob-
ally cyclic current component and middle bath mediated lo-
cal current component are crucial to exhibit the turnover be-
havior of the current into the middle bath. The joint cooper-
ation between the rates ratio G−

m/G+
m assisted by the middle

thermal bath and energy ⟨ω⟩l,− mainly results in such heat
amplification feature. Next, we investigate heat amplifica-
tion at weak and moderate system–middle bath couplings. In
the weak coupling regime, the finite heat amplification in ab-
sence of NDTC is discovered, and analytically estimated by
the Redfield scheme. It is mainly attributed to the inelastic
transport process. While in the moderate coupling regime,
it is interesting to find another giant amplification signature,
which is mainly contributed by the middle bath assisted ther-
mal transport between states | ± ⟩

η
and |0⟩. Therefore, we

clearly observe two different types of the heat amplification
effect by tuning the system–middle bath interaction in a wide
regime, and explore the corresponding microscopic mecha-
nisms, which are the answers for the questions in the intro-
duction. Moreover, we also analyze the corresponding NDTC
effect with the two-terminal setup. It should be noted that such
giant amplification and NDTC behaviors cannot be explained

by the Redfield scheme, which clearly demonstrates the wide
application of the PTRE.

We hope the analysis of the heat amplification and nega-
tive differential thermal conductance may provide some theo-
retical insight in design of the quantum thermal transistor.

Appendix A: FCS of heat currents in three-level
quantum system

Based on the full counting statistics, it is known that
the steady state current into the u-th bath Ju is expressed
as[33,49] Ju =

∂

∂ (iχu)
[limτ→∞

1
τ

ln𝒵(χu,τ)]
∣∣∣
χu=0

, where the gen-

erating function is 𝒵(χu,τ) = Tr[ρ̂χu(τ)] and the count-
ing parameter dependent system density matrix is ρ̂χu(τ) =

e−iτĤ−χu ρ̂tot(0)e iτĤχu , with the modified Hamiltonian Ĥχu =

e iχuĤu
b /2Ĥ e−iχuĤu

b /2 and ρ̂tot(0) the initial density matrix op-
erator of the whole system. Specifically, the time evolu-
tion of ρ̂χu(τ) can be equivalently written in the differen-
tial form of the quantum Liouvillian equation with an effec-
tive Hamiltonian including the counting parameters Ĥ{χ} =

Ĥs+∑u=l,m,r Ĥu
b +V̂m+∑u=l,r V̂u(χu), where {χ}= (χl ,χr) is

a set of parameters counting both the heat flows from the left
and right baths. The modified system–bath interactions are

V̂u(χu) =(Ŝ†
u + Ŝu)∑

k

(
gk,u e iωkχu/2b̂†

k,u +H.c.
)
,

u = l,r. (A1)

By applying the unitary transformation Ĥ ′ = Û†ĤÛ with
Û = exp [iB̂(|l⟩⟨l|− |r⟩⟨r|)], the transformed Hamiltonian be-
comes Ĥ ′

s + ∑u=l,m,r Ĥu
b + V̂m + ∑u=l,r V̂u(χu). In particular,

V̂u(χu) is transformed to

V̂ ′
u(χu) =

(
e−iB̂u Ŝ†

u + e iB̂u Ŝu

)
∑
k
(gk,u e iωkχu/2b̂†

k,u +H.c.).

(A2)

With the same approach introduced in Subsection 2.2, we ob-
tain the PTRE of system density operator ρ̂{χ}, which can be
marked by the counting parameters as
d
dt

ρ̂{χ} =−i
[
Ĥ ′

s, ρ̂{χ}
]
+ℒm

[
ρ̂{χ}

]
+ ∑

u=l,r
ℒu

χu

[
ρ̂{χ}

]
. (A3)

Here, the generalized dissipator is

ℒu
χu [ρ̂{χ}] = ∑

ω,ω ′

{
κu,+(ω

′,χu)Q̂†
u(ω

′)ρ̂{χ}Q̂u(ω)

+κu,−(ω
′,χu)Q̂u(ω

′)ρ̂{χ}Q̂†
u(ω)

+κ
*
u,+(ω

′,−χu)Q̂†
u(ω)ρ̂{χ}Q̂u(ω

′)

+κ
*
u,−(ω

′,−χu)Q̂u(ω)ρ̂{χ}Q̂†
u(ω

′)

−
[
κu,+(ω

′)Q̂u(ω)Q̂†
u(ω

′)ρ̂{χ}

+κu,−(ω
′)Q̂†

u(ω)Q̂u(ω
′)ρ̂{χ}+H.c.

]}
, (A4)

with the generalized dissipation rates

κu,+(ω
′,χu)=

∫
∞

−∞

dω1

4π
Λ(ω1)nu(ω1)e−iω1χuCu(ω1−ω

′),

(A5a)
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κu,−(ω
′,χu)=

∫
∞

−∞

dω1

4π
Λ(ω1)[1+nu(ω1)]e iω1χuCu(−ω1+ω

′).

(A5b)

In absence of the counting parameters (χl = 0,χr = 0), the
density operator ρ̂{χ}, the dissipator ℒu

χu [ρ̂{χ}], and dissipa-
tion rates κu,±(ω

′,χu) are reduced to the original ρ̂s, ℒu[ρ̂s],
and κu,±(ω

′) defined in Subsection 2.2, respectively.
Furthermore, we re-express the dynamical equation of

Eq. (A3) as d
dt |𝑃{χ}⟩⟩ = L{χ}|𝑃{χ}⟩⟩, where |𝑃{χ}⟩⟩ =

[ρ
{χ}
++ ,ρ

{χ}
−− ,ρ

{χ}
00 ,ρ

{χ}
+− ,ρ

{χ}
−+ ]T is the vector form of the re-

duced density matrix, with ρ
{χ}
i j = ⟨i|ρ̂{χ}| j⟩ (i, j = 0,±),

and L{χ} is the super-operator defined according to Eq. (A3).
Therefore, the heat currents flowing into the left and right ther-
mal baths can be expressed as[34]

Ju = ⟨⟨𝐼|
∂L{χ}
∂ (iχu)

∣∣∣∣
χ=0

|𝑃 ⟩⟩, (A6)

with the steady state |𝑃 ⟩⟩ = |𝑃{χ}⟩⟩ and ⟨⟨𝐼| = [1,1,1,0,0]
and u= l,r. The steady state current into the middle bath is ob-
tained by the energy conservation condition as Jm =−Jl − Jr.
It should be noted that though not shown here, the energy con-
servation is verified by counting the energy flows into the three
baths individually.

Appendix B: Nonequilibrium NIBA scheme

B1. Steady state heat currents

In the strong system–middle bath coupling regime, the
modified Hamiltonian in Eq. (4) is reduced to Ĥ ′

s,NIBA = εN̂ +

δεσ̂z, and the system–middle bath interaction in Eq. (5a) be-
comes V ′

m,NIBA = e iB̂σ̂−+H.c. Combined with full counting
statistics, the dynamical equation of populations in Eq. (A3) is
specified as

dPχ

l
dt

=−Gm(2δε)Pχ

l +Gχm
m (−2δε)Pχ

r −Gl,−(El)P
χ

l

+Gχl ,χm
l,+ (El)Pχ

m , (B1a)

dPχ
r

dt
=−Gm(−2δε)Pχ

r +Gχm
m (2δε)Pχ

l −Gr,−(Er)Pχ
r

+Gχr ,χm
r,+ (Er)Pχ

m , (B1b)

dPχ
m

dt
=− ∑

u=l,r
Gu,+(Eu)Pm + ∑

u=l,r
Gχu,χm

u,− (Eu)Pχ
u , (B1c)

where the transition rates are

Gχm
m (ω) =e iωχm

∫
∞

−∞

dτ e iωτ
η

2 eφm(τ), (B2a)

Gχu,χm
u,+ =

1
4π

∫
∞

−∞

dω1Λu(ω1)[1+nu(ω1)]e iω1χu e−i(ω1+Eu)χm

× [Cu(−ω1 −Eu)+H.c.], (B2b)

Gχu,χm
u,− =

1
4π

∫
∞

−∞

dω1Λu(ω1)nu(ω1)e−iω1χu e i(Eu+ω1)χm

× [Cu(Eu +ω1)+H.c.]. (B2c)

In absence of counting parameters, the steady state popula-
tions are obtained as

Pm =
1
𝒜
(G+

mG−
r +G−

mG−
l +G−

l G−
r ), (B3a)

Pl =
1
𝒜
(G−

mG+
l +G−

mG+
r +G+

l G−
r ), (B3b)

Pr =
1
𝒜
(G+

mG+
l +G+

mG+
r +G−

l G+
r ), (B3c)

with the coefficient 𝒜 = (G+
m + G−

m)(G
+
l + G+

r ) + G+
mG−

r +

G−
mG−

l +G−
l G+

r +G−
r (G

+
l +G−

l ). And the currents into the
left and right baths are given by

Ju = G+
u ⟨ω⟩u,+Pm −G−

u ⟨ω⟩u,−Pu, (u = l,r), (B4)

with the energy

⟨ω⟩u,+ =
1

4πG+
u

∫
dω1ω1Λu(ω1)[1+nu(ω1)]

× [Cu(−Eu −ω1)+H.c.], (B5a)

⟨ω⟩u,− =
1

4πG−
u

∫
dω1ω1Λu(ω1)nu(ω1)[Cu(ω1 +Eu)+H.c.],

(B5b)

and Eu = εu −∑k |gk,m|2/ωk. The current into the middle bath
based on the full counting statistics is given by

Jm =− 1
𝒜
[
G+

mG+
l G−

r (⟨ω⟩l,+−⟨ω⟩r,−)

+G−
mG−

l G+
r (⟨ω⟩r,+−⟨ω⟩l,−)

]
− 1

𝒜
[
(G−

m +G−
r )G

+
l G−

l (⟨ω⟩l,+−⟨ω⟩l,−)

+(G+
m +G−

l )G
+
r G−

r (⟨ω⟩r,+−⟨ω⟩r,−)
]
. (B6)

B2. Behaviors of G±
u and ⟨ω⟩u,± at strong system–middle

bath coupling

We analyze the effect of the middle bath on the rates
G±

u (u = l,r) in Eqs. (13b) and (13c) and energy ⟨ω⟩u,± in
Eqs. (14a) and (14b) with strong system–middle bath interac-
tion, where the renormalization energy becomes (−Eu) ≫ 1,
with Eu = (εu −∑k |gk,m|2/ωk). In particular for the rate G−

r ,
the correlation function Cr(ω1 +Eu) makes the energy around
ω1 ≈ (−Eu) dominates the energy exchange process. More-
over, the cooperation of the large energy gap (−Eu) and low
temperature of the right bath (Tr) leads to the negligible bo-
son excitation from the right bath [i.e., nr(−Eu)≈ 0]. Hence,
G−

r shows negligible contribution to the nonequilibrium en-
ergy transfer in the three-level system. Accordingly, the heat
currents are simplified as

Jl,NIBA =
1
𝒜
[−G−

l G−
mG+

r ⟨ω⟩l,−

+G−
mG−

l G+
l (⟨ω⟩l,+−⟨ω⟩l,−)], (B7a)

Jm,NIBA =
1
𝒜
[G−

l G−
mG+

r (⟨ω⟩l,−−⟨ω⟩r,+)

−G−
mG−

l G+
l (⟨ω⟩l,+−⟨ω⟩l,−)], (B7b)

Jr,NIBA =
1
𝒜

G−
l G−

mG+
r ⟨ω⟩r,+, (B7c)

with 𝒜 = (G+
m + G−

m)(G
+
l + G+

r ). However, it should be
noted that though G−

l is much smaller than G+
l(r) as shown in
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Figs. B1(a)–B1(c), it can not be naively ignored. The main
reason is that Jr,NIBA is contributed by the cyclic flux (the cor-
responding cycle is |0⟩→|l⟩→|r⟩→|0⟩), which is assisted by
the rate G−

l .
Then, we study the effect of the middle thermal bath on

the rates G+
l(r) and G−

l in Figs. B1(a)–B1(c). It is found that
by increasing the temperature Tm both rates show monotonic
enhancement. This clearly demonstrates that the joint energy
exchange process from the left (right) bath and the middle bath
is crucial to characterize these transition rates, which can not
be described with the zeroth order approximation

G+,(0)
u ≈η2

u

2
Λu(−Eu)[1+nu(−Eu)], (B8a)

G−,(0)
l ≈

η2
l

2
Λu(−El)nl(−El). (B8b)

Moreover, the system–left (right) bath interaction is rather
weak. Hence, one boson contribution of the middle bath can
approximately quantify the transition rates. It results in the
first order correction as

G+,(1)
u ≈η2

u

2
Λu(−Eu)[1+nu(−Eu)]

+
η2

u

8π

∫
∞

−∞

dω1
Λu(ω1)Λm(−Eu −ω1)

(Eu +ω1)2

× [1+nm(−Eu −ω1)], (B9a)

G−,(1)
l ≈

η2
l

2
Λu(−El)nl(−El)

+
η2

l
8π

∫
∞

−∞

dω1
Λl(ω1)Λm(El+ω1)

(El+ω1)2 nl(ω1)nm(El+ω1).

(B9b)

Similarly, the energies in Figs. B1(d)–B1(f) with the first order
correction can be approximated as

⟨ω⟩(1)u,+ ≈ 1
4πG+

u

{
2πη

2
u Λu(−Eu)[1+nu(−Eu)](−Eu)

+
1
2

∫
∞

−∞

dω1
Λu(ω1)Λm(−Eu −ω1)

(−Eu −ω1)2 [1+nm(ω1)]

}
,

(B10a)

⟨ω⟩(1)l,− ≈ 1
4πG−

l
{2πη

2
l Λu(−El)nl(−El)(−El)

+
1
2

∫
∞

−∞

dω1
Λl(ω1)Λm(El +ω1)

(El +ω1)2 nl(ω1)nm(El +ω1).

(B10b)

While the corresponding zeroth order approximation re-
sults are

⟨ω⟩(0)u,+ ≈ 1
2G+

u
η

2
u Λu(−Eu)[1+nu(−Eu)](−Eu), (B11a)

⟨ω⟩(0)l,− ≈ 1
2G−

l
η

2
l Λu(−El)nl(−El)(−El). (B11b)
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Fig. B1. The transition rates (a) G+
l , (b) G+

r , (c) G−
l and the energy quanta (d) ⟨ω⟩l,+, (e) ⟨ω⟩r,+, (f) ⟨ω⟩l,− within the nonequilibrium NIBA

scheme. The solid black lines represent the full order calculation with expressions shown in Eqs. (13b), (13c), (14a), and (14b); the dashed red
lines with circles represent the zeroth order approximation in Eqs. (B8a), (B8b) (B11a), and (B11b); the dashed blue lines with up-triangles
represent the first order approximation in Eqs. (B9a), (B9b), (B10a), and (B10b). The other parameters are given by εl = 1.0, εr = 0.6, ∆ = 0.6,
γ = 0.0002, ωc = 10, Tl = 2, and Tr = 0.4.

B3. Finite amplification factor at strong coupling

At strong system–middle bath coupling αm =

2, the current into the middle bath is approximated
by Jm,NIBA ≈ J(a)

m,NIBA + J(b)
m,NIBA, with components

J(a)
m,NIBA = G−

l G−
mG+

r (⟨ω⟩l,− − ⟨ω⟩r,+)/𝒜 and J(b)
m,NIBA =

G−G+
l G−

l (⟨ω⟩l,− − ⟨ω⟩l,+)/𝒜, as shown in Eqs. (20a) and

(20b). From Fig. B2(a), it is known that for J(a)
m,NIBA the mag-

nitudes of both the flux rate G−
l G−

mG+
r /𝒜 and the energy

difference (⟨ω⟩l,−−⟨ω⟩r,+) show monotonic increase, which

results in the enhancement of J(a)
m,NIBA. Moreover, J(a)

m,NIBA
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dominates the behavior of Jm,NIBA, though J(b)
m,NIBA exhibits the

turnover behavior, as shown in Fig. B2(b). While the heat cur-

rent into the right bath is reduced to J(a)
r,NIBA ≈ G−

l G−
mG+

r ⟨ω⟩,r,+
𝒜 ,

as given in Eq. (19). And the flux rate G−
l G−

mG+
r /𝒜 and

the energy ⟨ω⟩,r,+ are strengthened by increasing tempera-
ture Tm. Hence, Jr,NIBA shows the monotonic increase as in
Fig. B2(c). considering the large deviation of magnitudes of
currents Jr,NIBA and Jm,NIBA, the large and finite heat amplifi-
cation βr is expected to be observed.

.
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Jm,NIBA/γ

- -
Gl

-
GmGr/A

-

Jm, NIBA/γ(a)

Jr,  NIBA/γ

Jr, NIBA/γ
(a)

(b)
Jm, NIBA/γ

+

Fig. B2. (a) Average energy quanta ⟨ω⟩l,±, ⟨ω⟩r,+, and the flux rates
G−

l G−
mG+

r /𝒜 and G+
l G−

l G−
m/𝒜; (b) heat current into the middle bath

Jm,NIBA/γ , the main components J(a)
m,NIBA/γ and J(b)

m,NIBA/γ; (c) heat current

into the right bath Jr,NIBA/γ and the main component J(a)
r,NIBA/γ within the

nonequilibrium NIBA scheme at strong coupling αm = 2. The other param-
eters are given by εl = 1.0, εr = 0.6, ∆ = 0.6, γ = 0.0002, ωc = 10, Tl = 2,
and Tr = 0.4.

Appendix C: Redfield scheme

The Hamiltonian of the three-level system is given
by Ĥs = ∑u=l,r εu|u⟩⟨u| + ∆(|l⟩⟨r| + H.c.). The two ex-
cited eigenstates are given by |+⟩ = cos θ

2 |l⟩+ sin θ

2 |r⟩ and
|−⟩ = −sin θ

2 |l⟩+ cos θ

2 |r⟩, with tanθ = ∆/δε , the eigenen-
ergy E± = ε ±

√
δε2 +∆ 2, ε = (εl + εr)/2 and δε = (εl −

εr)/2. The system–phonon interaction is given by V̂m =

∑k(gk,mb̂†
k,m+H.c.)⊗Ŝm, with Ŝm = cosθ(|+⟩⟨+|−|−⟩⟨−|)−

sinθ(|+⟩⟨ − |+ |−⟩⟨+|). Then, the dynamical equation is
given by

dρ̂χ

dt
=−i[Ĥs, ρ̂χ ]+∑

u
ℒu

χu [ρ̂χ ], (C1)

where the dissipator related with the middle bath is

ℒχm
m [ρ̂χ ] = ∑

ω,ω ′
{−Jm(ω

′)nm(ω
′)[ρ̂χ Ŝm(ω

′)Ŝm(ω)+H.c.]

+ e−iω ′χmJm(ω
′)nm(ω

′)Ŝm(ω)ρ̂χ Ŝm(ω
′)

+ e iω ′χmJm(ω
′)[1+nm(ω

′)]Ŝm(ω
′)ρ̂χ Ŝm(ω)},

(C2)

with Ŝm(−τ) = ∑ω Ŝm(ω)e iωτ . And the dissipator related
with the l(r)-th bath is

ℒu
χu [ρ̂{χ}] =

Ju(ω
′)

4
nu(ω

′)e−iω ′χu
[
Q̂†

u(ω
′)ρ̂{χ}Q̂u(ω)

+ Q̂†
u(ω)ρ̂{χ}Q̂u(ω

′)
]

+
Ju(ω

′)

4
(1+nu(ω

′))e iω ′χu
[
Q̂u(ω

′)ρ̂{χ}Q̂†
u(ω)

+ Q̂u(ω)ρ̂{χ}Q̂†
u(ω

′)
]

−
[Ju(ω

′)

4
nu(ω

′)Q̂u(ω)Q̂†
u(ω

′)ρ̂{χ}

+
Ju(ω

′)

4
(1+nu(ω

′))Q̂†
u(ω)Q̂u(ω

′)ρ̂{χ}+H.c.
]
,

(C3)

with Ŝu(−τ) = ∑ω Q̂u(ω)e iωτ .
The steady state heat current obtained by FCS is given by

Jl =
cos2 θ

2
2

κ
a
l,+E+ρ+++

sin2 θ

2
2

κ
a
l,−E−ρ−−

−
(

cos2 θ

2
2

κ
e
l,+E++

sin2 θ

2
2

κ
e
l,−E−

)
ρ00, (C4)

Jr =
sin2 θ

2
2

κ
a
r,+E+ρ+++

cos2 θ

2
2

κ
a
r,−E−ρ−−

−
(

sin2 θ

2
2

κ
e
r,+E++

cos2 θ

2
2

κ
e
r,−E−

)
ρ00, (C5)

Jm =
sin2

θ

2
(E+−E−)(κ

a
mρ++−κ

e
mρ−−), (C6)

and Jm = −Jl − Jr. It should be noted that the steady state
coherence in the eigenbasis is negligible.

Moreover, the steady state populations are given by

P+ =
1
ℬ
(Γ e

+ +Γ
e
−)[Γ

e
+Γ

a
− +(Γ e

+ +Γ
e
−)Γ

+
p ], (C7a)

P− =
1
ℬ
(Γ e

+ +Γ
e
−)[Γ

a
+Γ

e
− +(Γ e

+ +Γ
e
−)Γ

−
p ], (C7b)

Pm =
1
ℬ
(
Γ

a
+ [Γ

e
+Γ

a
− +(Γ e

+ +Γ
e
−)Γ

+
p ]

+Γ
a
− [Γ

a
+Γ

e
− +(Γ e

+ +Γ
e
−)Γ

−
p ]
)
, (C7c)

ℬ =(Γ a
+ +Γ

e
+ +Γ

e
−)[Γ

e
+Γ

a
− +(Γ e

+ +Γ
e
−)Γ

+
p ]

+ (Γ a
− +Γ

e
+ +Γ

e
−)[Γ

a
+Γ

e
− +(Γ e

+ +Γ
e
−)Γ

−
p ], (C7d)

where the rates are defined as Γ
e(a)
+ = 1

2 (κ
e(a)
l,+ cos2 θ

2 +

κ
e(a)
r,+ sin2 θ

2 ), Γ
e(a)
− = 1

2 (κ
e(a)
l,− sin2 θ

2 + κ
e(a)
r,− cos2 θ

2 ), and

Γ
+(−)

p = sin2 θ

8 κ
e(a)
p , with κe

u,± = Λu(E±)nu(E±), κa
u,± =

Λu(E±)[1 + nu(E±)], κe
p = Λm(E+ − E−)nm(E+ − E−), and

κe
p = Λm(E+−E−)[1+nm(E+−E−)]. The currents are spec-

ified as

Jl = ∑
ξ=±

(1+ξ cosθ)

4ℬ
Eξ

[
κ

a
l,ξ (Γ

e
+ +Γ

e
−)Γ

e
ξ

Γ
a

ξ̄

−κ
e
l,ξ (Γ

a
+Γ

e
+Γ

a
− +Γ

a
−Γ

e
−Γ

a
+ )
]

+ ∑
ξ=±

(1+ξ cosθ)

4ℬ
Eξ (Γ

e
+ +Γ

e
−)
[
κ

a
l,ξ (Γ

e
+ +Γ

e
−)Γ

ξ
p
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−κ
e
l,ξ (Γ

a
+Γ

+
p +Γ

a
−Γ

−
p )
]
, (C8)

Jr = ∑
ξ=±

(1−ξ cosθ)

4ℬ
Eξ

[
κ

a
r,ξ (Γ

e
+ +Γ

e
−)Γ

e
ξ

Γ
a

ξ̄

−κ
e
r,ξ (Γ

a
+Γ

e
+Γ

a
− +Γ

a
−Γ

e
−Γ

a
+ )
]

+ ∑
ξ=±

(1−ξ cosθ)

4ℬ
Eξ (Γ

e
+ +Γ

e
−)
[
κ

a
r,ξ (Γ

e
+ +Γ

e
−)Γ

σ
p

−κ
e
r,σ (Γ

a
+Γ

+
p +Γ

a
−Γ

−
p )
]
. (C9)

The current into the middle bath is

Jm =− 1
ℬ
(E+−E−)(Γ

e
+ +Γ

e
−)(Γ

a
+Γ

e
−Γ

+
p −Γ

a
−Γ

e
+Γ

−
p ).

(C10)

In particular, under the condition E+ ≫ E− and Γ ±
p ≫

Γ
a(e)
− , the coefficient ℬ is reduced to ℬ = (Γ e

+ +Γ −
e )[(Γ a

+ +

Γ e
++Γ e

−)Γ
+

p +(Γ a
−Γ e

++Γ e
−)Γ

−
p ], and the currents into the mid-

dle and right baths are approximated as

Jm ≈−
E+(Γ

e
+ +Γ e

−)

ℬ
(Γ a

+Γ
e
−Γ

+
p −Γ

a
−Γ

e
+Γ

−
p ), (C11)

Jr ≈
(1− cosθ)E+(Γ

e
+ +Γ e

−)

4ℬ
×
[
κ

a
r,+(Γ

e
+ +Γ

e
−)Γ

+
p −κ

e
r,+(Γ

a
+Γ

+
p +Γ

a
−Γ

−
p )
]
. (C12)

If we redefine Jm = J′m + J0
m and Jr = J′r + J0

r , with

J′m =E+×
Γ a
−Γ e

+

(Γ a
− +Γ e

+ +Γ e
−)

×
(Γ a

+Γ e
−)/(Γ

a
−Γ e

+)+(Γ a
+ +Γ e

+ +Γ e
−)/(Γ

a
− +Γ e

+ +Γ e
−)

Γ
−

p /Γ
+

p +(Γ a
+ +Γ e

+ +Γ e
−)/(Γ

a
− +Γ e

+ +Γ e
−)

, (C13)

J′r =
(1− cosθ)E+

4
×

κe
r,+Γ a

−
(Γ a

− +Γ e
+ +Γ e

−)
×

(Γ a
+ +Γ e

+ +Γ e
−)/(Γ

a
− +Γ e

+ +Γ e
−)+ [κa

r,+(Γ
e
+ +Γ e

−)−κe
r,+Γ a

+ ]/(κ
e
r,+Γ a

− )

Γ
−

p /Γ
+

p +(Γ a
+ +Γ e

+ +Γ e
−)/(Γ

a
− +Γ e

+ +Γ e
−)

, (C14)

J0
m = E+Γ a

−Γ e
+/(Γ

a
− +Γ e

+ +Γ e
−), and J0

r = − (1−cosθ)E+
4 κe

r,+Γ a
−/(Γ

a
− +Γ e

+ +Γ e
−). It should be noted that J0

m and J0
r are irrelevant

to Tm. Hence, the linear heat amplification is given by

βr ≈
(1− cosθ)

4

∣∣∣∣κe
r,+Γ a

− (Γ
a
+ +Γ e

+ +Γ e
−)+(Γ a

− +Γ e
+ +Γ e

−)[κ
a
r,+(Γ

e
+ +Γ e

−)−κe
r,+Γ a

+ ]

Γ a
−Γ e

+(Γ
a
+ +Γ e

+ +Γ e
−)+(Γ a

− +Γ e
+ +Γ e

−)Γ
a
+Γ e

−

∣∣∣∣ . (C15)

Moreover, considering the condition Γ
a(e)
+ ≫Γ

a(e)
− , the ampli-

fication factor is simplified as

βr ≈
sin2

θ

16

∣∣∣∣ κe
l,+κa

r,+−κa
l,+κe

r,+

Γ a
− (Γ

a
+ +Γ e

+)+Γ a
+Γ e

−

∣∣∣∣ . (C16)
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